

Welcome to pyy!

pyy [http://pyy.im/] is a python library designed to allow for rapid creation of HTML5
applications through tight integration with your server-side code.

>>> print html(body(div('Forget templates and binding.')))
<html>
 <body>
 <div>Forget templates and binding.</div>
 </body>
</html>

The foundation of the library is in eliminating the need for an intermediate
templating language as well as the weak and often redundant bindings that come
with it. By coupling the HTML generation as simple object creation within your
code you can seamlessly create the necessary HTML for your application using
the expressive python syntax.

Contents:

	Getting Started

	Features

Modules:

	pyy.cgi

	pyy.html
	About

	Usage

	Developed By

	License

	pyy.server

	pyy.web
	About

	Usage

	Developed By

	License

Getting Started

Coming soon.

Features

Coming very soon.

pyy.cgi

pyy.html

About

pyy.html allows for creating (X)HTML markup through the use of objects.
This allows you to tightly integrate (X)HTML generation into your backend
without the need of using an intermediate templating language.

pyy.html also provides you with helper classes for generating and parsing
(X)HTML documents.

Usage

All these examples assume you have imported the appropriate tags or entire tag
set (i.e. from pyy.html.html import *).

Hello, pyy!

	Constructing a “Hello, World!”-style example is as easy as this:

	>>> print html(body(h1('Hello, pyy!')))
<html>
 <body>
 <h1>Hello, pyy!</h1>
 </body>
</html>

Complex Structures

Through the use of the += operator and the .add() method you can easily
create more advanced structures.

	Create a simple list:

	>>> list = ul()
>>> for item in range(4):
>>> list += li('Item #', item)
>>> print list

 Item #0
 Item #1
 Item #2
 Item #3

If you are using a database or other backend to fetch data, pyy.html supports
iterables to help streamline your code:

>>> print ul(li(a(name, href=link), __inline=True) for name, link in menu_items)

 Home
 About
 Downloads
 Links

	A simple document tree:

	>>> _html = html()
>>> _body = _html.add(body())
>>> header = _body.add(div(id='header'))
>>> content = _body.add(div(id='content'))
>>> footer = _body.add(div(id='footer'))
>>> print _html
<html>
 <body>
 <div id="header"></div>
 <div id="content"></div>
 <div id="footer"></div>
 </body>
</html>

For clean code, the .add() method returns children in tuples. The above
example can be cleaned up and expanded like this:

>>> _html = html()
>>> _head, _body = _html.add(head(title('Simple Document Tree')), body())
>>> names = ['header', 'content', 'footer']
>>> header, content, footer = _body.add(div(id=name) for name in names)
>>> print _html
<html>
 <head>
 <title>Simple Document Tree</title>
 </head>
 <body>
 <div id="header"></div>
 <div id="content"></div>
 <div id="footer"></div>
 </body>
</html>

	You can modify the attributes of tags through a dictionary-like interface:

	>>> header = div()
>>> header['id'] = 'header'
>>> print header
<div id="header"></div>

	Comments can be created using objects too!

	>>> print comment('BEGIN HEADER')
<!--BEGIN HEADER-->
>>> print comment(p('Stop using IE5!'), condition='lt IE6')
<!--[if lt IE6]>
<p>Stop using IE5!</p>
<![endif]-->

Creating Documents

Since creating the common structure of an HTML document everytime would be
excessively tedious pyy.html provides a class to create an manage them for
you, document.

When you create a new document, the basic HTML tag structure is created for
you.

>>> d = document()
>>> print d
<html>
 <head>
 <title>PYY Page</title>
 </head>
 <body></body>
</html>

The document class also provides helpers to allow you to access the html,
head, and body elements directly.

>>> d = document()
>>> d.html
<pyy.html.html.html: 0 attributes, 2 children>
>>> d.head
<pyy.html.html.head: 0 attributes, 0 children>
>>> d.body
<pyy.html.html.body: 0 attributes, 0 children>

You should notice that here the head tag contains zero children. This is
because the default title tag is only added when the document is rendered
and the head element already does not explicitly contain one.

The document class also provides helpers to allow you to directly add
elements to the body tag.

>>> d = document()
>>> d += h1('Hello, World!')
>>> p += p('This is a paragraph.')
>>> print d
<html>
 <head>
 <title>PYY Page</title>
 </head>
 <body>
 <h1>Hello, World!</h1>
 <p>This is a paragraph.</p>
 </body>
</html>

Markup Validation

You can also set the DOCTYPE of the document which will validate the tag tree
when it is rendered.

>>> d = document()
>>> d.doctype = dtd.xhtml11
>>> print d
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>PYY Page</title>
 </head>
 <body></body>
</html>

Notice how the required XHTML 1.1 attribute xmlns is automatically added to
the <html> tag.

If there are any errors in the tag tree a ValueError will be thrown which
describes the offending tag. You can check the validity of your document at
any time by calling validate() explicity.

	You may also set a document’s DOCTYPE with the keyword argument doctype.

	>>> d = document(doctype=dtd.html5)

However, doing so will cause the entire document to be validated with every
added tag. For production environments it is best to set the DOCTYPE after the
entire tag tree has been created so it all is only validated once.

Parsing Documents

The parser class contains two methods: parse and pageparse. parse will
take valid and mostly-valid (X)HTML input and return a tag tree. pageparse
will take an entire document and return a document instance complete with
the DOCTYPE (if present) and a tag tree using the (X)HTML version specified
by the DOCTYPE.

parse will simply return a heirarchy of all the tags and their content that
it can recognize in a string.

>>> parse('<p>Hello.</p>')
<pyy.html.html.p: 0 attributes, 1 child>
>>> parse('<html><head><title>test</title></head><body><h1>Hi.</h1></body></html>')
<pyy.html.html.html: 0 attributes, 2 children>
>>> parse('<div id="first"></div><div id="second"></div>')
[<pyy.html.html.div: 1 attribute, 0 children>, <pyy.html.html.div: 1 attribute, 0 children>]

Notice that if multiple top-level tags exist in the string parse will return
them as an array.

pageparse also takes a string of tags and optionally a DOCTYPE and returns a
document object.

>>> pageparse('<!DOCTYPE html><html><head><title>Test</title></head><body></body></html>')
<pyy.html.document.document html5 "Test">

Developed By

	Tom Flanagan - <theknio@gmail.com>

	Jake Wharton - <jakewharton@gmail.com>

Git repository located at
github.com/Knio/pyy

License

Copyright 2009 Tom Flanagan, Jake Wharton

This file is part of pyy.

pyy is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

pyy is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General
Public License along with pyy. If not, see
<http://www.gnu.org/licenses/>.

pyy.server

pyy.web

About

pyy.web contains useful classes and functions to aid in dealing with the HTTP
protocol and serving websites.

Usage

Cookies

pyy.web.cookie allows for easy creation of properly formatted cookies.

The cookie name and value are the only two required fields for its simplest
form:

>>> cookie('test', 'cookie')
<pyy.web.cookie.cookie test=cookie; path=/;>

You can also pass any number of the following arguments:
* expires - Expiration date (mutually exclusive with duration).
* duration - Length of cookie (mutually exclusive with expires).
* path - The URL path of the cookie (default: /).
* domain - The cookie’s domain.
* secure - Whether or not the cookie is secure (default: False).
* httponly - If the cookie applies to only HTTP (default: False).

While the string and __repr__ outputs contain the rendered cookie you can
also call render() directly which takes an optional is_header boolean.

>>> cookie('test', 'cookie').render()
'test=cookie; path=/;'
>>> cookie('test', 'cookie').render(True)
'Set-Cookie: test=cookie; path=/;'

HTTP Messages

pyy.web.httpmessage contains the classes for the httprequest and
httpresponse objects. These two classes hold information on the HTTP requests
and the HTTP responses, respectively, that the other modules pass between
themselves.

Parsers

The pyy.web.parsers class contains four functions which aid in parsing common
formats of the HTTP protocol into a more friendly and usable format.

	parse_query(string) - Parses a=b&c=d format into a dictionary. Also
supports arrays.

	parse_semi(string) - Parses a=b; c=d format into a dictionary.

	parse_user_agent(string) - Parses a user agent string and returns a
browser object containing vendor and version.

	parse_multipart(content_type, data) - Parses multipart encoded form data
into a dictionary.

Resolvers

When serving dynamic web applications it is sometimes useful to obfuscate your
URLs or simple clean them up to be “pretty”. The resolvers class allows you
to create logical rules or patterns for your URLs and have them easily be
mapped back to approprite classes.

There are currently two methods of dynamic URL resolving: Regex-based and file
heirarchy-based.

Regex-based resolving takes a list of tuples which associate a regular
expression to a class. When a request is resolved in this way the tuples are
iterated over and the first match is taken and returned.

	urls = [

	(r’^/photos/’, pages.photos),
(r’^/videos/’, pages.videos),

]

If a match is not found, an httperror is raised with a 404 code.

You can also use named match groups in your regular expressions to help parse
the URL which will be copied into the request’s GET mapping.

	urls = [

	(r’^/photos/((?P<id>d+)/)?$’, pages.photos)

]

Here an optional ID can be specified after the /photos/ qualifier and the
pages.photos class can react accordingly.

	When you create a directory like the following:

	
	pages/

	__init__.py
home.py
admin/

__init__.py
users.py

	you can use corresponding URLs to access those classes:

	/ (would match in __init__.py)
/home/ (would match home.py)
/home/page2/ (would match home.py with ‘page2’ put into the request’s GET)
/admin/ (would match admin/__init__.py)
/admin/users/ (would match admin/users.py)
/admin/other/ (would match admin/__init.py with ‘other’ put into the request’s GET)

In each of those files should be an Index class which is the default one
selected in a file. If in the case of the /admin/other/ URL the
admin/__init__.py file had an Other class it would be the one that was
selected.

Developed By

	Tom Flanagan - <theknio@gmail.com>

	Jake Wharton - <jakewharton@gmail.com>

Git repository located at
github.com/Knio/pyy

License

Copyright 2009 Tom Flanagan, Jake Wharton

This file is part of pyy.

pyy is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

pyy is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General
Public License along with pyy. If not, see
<http://www.gnu.org/licenses/>.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyy	

 	
 	
 pyy.html	

 	
 	
 pyy.web	

Index

 P

P

 	
 	pyy.html (module)

 	
 	pyy.web (module)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to pyy!

 		
 Getting Started

 		
 Features

 		
 pyy.cgi

 		
 pyy.html

 		
 About

 		
 Usage

 		
 Hello, pyy!

 		
 Complex Structures

 		
 Creating Documents

 		
 Markup Validation

 		
 Parsing Documents

 		
 Developed By

 		
 License

 		
 pyy.server

 		
 pyy.web

 		
 About

 		
 Usage

 		
 Cookies

 		
 HTTP Messages

 		
 Parsers

 		
 Resolvers

 		
 Developed By

 		
 License

_static/up-pressed.png

_static/up.png

